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The superconducting compound Nb3Sn was heavily doped 
with carbon during chemical vapour deposition and then 
annealed. Very high current carrying capacities could be 
attained by this method G.2 x 106 A/cm2 at 5 T).

The current carrying capacity of NbaSn, which was 
obtained by chemical vapour deposition, is greatly 
increased by doping with carbon1,2. When the carbon 
is added, the critical current density at first increases 
approx. linearly with the concentration1, reaches a flat 
maximum at 2 atom-% (roughly jc = 1.5 x 106 A/cm2 
at 5 T) and decreases again with higher concentrations, 
provided that the material has not been subject to any 
special post-treatment. To obtain very high critical 
currents, a large number of pinning centres is necessary 
which, in turn, should have a high potential difference 
and an optimal dimensioning. For this purpose NbaSn 
was doped to a very high level with carbon (6.5 atom- %) 
and then the attempt was made to relocate the carbon 
atoms within the matrix by an annealing process and 
thus favourably influence the dimension of the pinning 
centres.

The compound NbßSn was produced by reducing the 
chlorides of the metals with hydrogen. A layer of this 
compound, roughly 5 ^m thick, was deposited on both 
sides of a 2 mm wide Hastelloy tape. During the de­
position, CO was blown into the reaction chamber. The 
tapes were annealed in a stream of argon (Linde 
99.998%) interposing a heated niobium getter in front 
of the tapes. All tapes were electroplated with a 40 ^m 
thick layer of silver before the measurements. The 
critical current density of the doped material was rela­
tively low immediately after production. However, the 
current density increased strongly when the material 
was annealed for 30 minutes under ambient argon at 
temperatures between 550 °C and 900 °C (Table 1), 
whereas the length of time of the annealing process did 
not seem to be critical. Annealing temperatures above 
900 °C were not used, since then a reaction between the 
NbßSn layer and the substrate started to take place. The 
maximum of the critical current density is reached at an 
annealing temperature of 800°C.

Table 1 also contains the critical temperature Tc and 
the residual resistivity o as a function of the annealing
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Tab. 1. Critical current density, critical temperature and 
residual resistivity with various annealing treatments (P plane 

of the tape).

Annealing Jc T1 c Q
temperature 106 A/cm2 K 10-5Q cm

°C at 10 T, 4,2 K
H I P

no annealing 0,17 13,4 5,4
550 0,32 14,9 5,4
700 0,60 14,9 2,7
800 0,64 15,0 2,4
900 0,39 17,0 2,0

temperature. The degradation of Tc with increasing 
carbon content seems to be caused by internal strains1. 
The transition temperature increases with a rise in the 
annealing temperature, whilst the residual resistivity 
decreases. Both effects are probably due to a conglo­
meration of the carbon atoms.
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Fig. 1. Current density of NbjSn, doped with 6,5 atom — % 
carbon, annealed at 800°C.

The homogenity of the layers with respect to the 
critical current density was checked on specimens which 
had been annealed at 800 °C. For this purpose, the layers 
were removed in several steps by a chemical etching 
process and the critical current was determined in each 
case for H I P  (P the plane of the tape) as well as for 
H || P (Fig. 1). In high fields, the critical currents were 
proportional to the thickness of the layers. Hence it can 
be concluded that the layers were homogeneous. With 
low fields and correspondingly high current densities, 
however, the values at the full layer thickness were 
somewhat too low. In addition, the measurements per­
formed on these specimens indicated instable charac­
teristics. In this case, only the reduced layer thicknesses 
were used for calculating the current density.
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It should be noted that the critical current densities 
are higher with the H || P orientation than what they 
are with H IP . This is a very interesting point, since 
the opposite relationship is true for nondoped or weakly 
doped NbsSn which is produced from the gas phase.
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In der Plastomechanik ist die zweite Deviator-In- 
variante

h  = \  aij (1)
(a'u Spannungsdeviator) von Bedeutung, da mit ihr eine 
einfache Formulierung der mises-Fließbedingung1 mög­
lich ist:

h  =  (2)
Darin ist crF die im einachsigen Grundversuch ermittelte 
Fließgrenze eines isotropen Werkstoffes.

Eine andere Schreibweise der MiSESschen Fließbedin­
gung ist folgendermaßen möglich. Da Fließen nur in­
folge von Schubspannungen auftritt, seien hier (neue) 
Spannungsgrößen

(
Tll T12 t 13\
T21 *22 *23 )

T}1 T32 T33/

formal definiert, die (konsequent) nur „Schubspannun­
gen" sind (im Gegensatz zum Spannungstensor au):

Tn =  H ff22 -  o33); r12 = £ (<x23 -  <r31) |  ^ ^  
t22 = £ (°33 — ^ll); T23 =  £ (°31 ~  a\2)/

usw., d.h., diese Spannungsgrößen werden aus den 
Koordinaten des Spannungstensors au in folgender 
Weise gebildet:

TiJ = £ (°kl — °mn), 
k =  i + l ;  l = j  +  1 
m = i +  2; n = j  + 2

|  i,y =  1,2, 3 zyklisch; (4b)

dabei soll unter k =  i +  1 bzw. m = i =  2 die jeweils 
nächste bzw. übernächste Zahl der zyklischen Folge 
/ =  1, 2, 3 verstanden sein. Entsprechendes gilt für

/ = j  +  1 bzw. n =  j  +  2 der zyklischen Folge j  =  1, 
2, 3. Es sei darauf hingewiesen, daß r , , gemäß Bildungs- 
gesetz (4 b) keine allgemeine Tensoreigenschaft besitzt, 
wie man über das Transformationsgesetz der Tensoren 
zweiter Stufe2 nachprüfen kann. Mithin wird auch eine 
analog Gl. (1) gebildete Größe

J \ = \ r i j xi} (5)

keine Invariante sein. Vielmehr läßt sich J* mit Gl. (1) 
und Definition (4) in einen invarianten Anteil und einen 
Anteil, der nicht invariant ist, aufspalten:

h r ij Tu = i J i ~  i  (°12 +  °23 +  ff3i)2- (6) 
Im Gegensatz dazu ist die Größe

(7a)

die entsprechend der Definition (4) auch durch

J* = h J[ (7b)
ausgedrückt werden kann, eine Invariante. Sie ver­
schwindet identisch wie die erste Invariante J{ des 
Spannungsdeviators a\j.

Beschränkt man sich auf die Hauptschubspannungen

t I = i  (°n — <W; Tn =  £ fam — ai);
t ii1 =  h(ai —

(8)

(<Tj, Cjj, Cju Hauptnormalspannungen), dann gilt für die 
hier eingeführten Schubspannungsgrößen [Gl. (3), 
(4a, b)]:

=  0
0 0 
r„ 0

tO 0 t,
(9)

In diesem Sonderfall verschwindet in der Beziehung (6) 
der zweite Term, so daß dann wegen Gl. (5) gilt:

(10)
Setzt man

j*2 =  (£ Of)2 bzw. J t  =  Tmax (Ha, IIb)

(t max = £ ctf maximale Schubspannung des einachsigen 
Grundversuchs), dann folgt unmittelbar die MiSESSche



Fließbedingung (2). Es braucht nicht erwähnt zu werden, 
daß man die maximale Schubspannung rmax eines ein­
achsigen Zugspannungszustandes — a F; an =  <xn, 
=  0) nicht mit der Schubfließgrenze k — t f = £^3 aF, 
die bei reiner Torsion (o{ = rF; au = — ct,; er,,, = 0 ) 
ermittelt wird, verwechseln darf. Somit unterscheiden 
sich die Fließbedingungen (2) und (11) nur in den Werk­
stoffkennwerten k und Tmax =  ̂(tf . Anisotropes Ver­
halten kann analytisch beschrieben werden durch den 
gleichen Formalismus wie im isotropen Fall [Gin. (5) 
und (11 a, b)], wenn man eine Verzerrung der Schub­
spannungsgrößen gemäß

ATlJ = a ikTkJ (12)
vornimmt. Darin ist

/«i 0 0 \ 
au =  lo  au 0 (13)

\0  0 amJ

ein „Verzerrungsfaktor", der den Anisotropieeinfluß 
bewirkt. Im isotropen Sonderfall stimmt a^ mit dem 
KRONECKER-Delta <5iy überein. In Anlehnung an die 
Beziehungen (5) und (IIa) kann eine Fließbedingung 
bei Anisotropie durch

(i <7f)2 -  i  Ar tJ A*tj 04a)
bzw. mit der Verzerrung (12) durch

(£<*f)2 =  \ a ikTkJaikr k) (14b)
dargestellt werden.

Mit Gl. (13) lautet Gl. (14b)

(i °r)2 = 4 (fl? rj +  a2n r2u + a2m r2m). (14c)

Ersetzt man in Gl. (14c) die Hauptschubspannungen 
durch Hauptnormalspannungen gemäß den Relationen 
(8), dann erkennt mag sofort die HiLL-Bedingung3. Es 
sei darauf hingewiesen, daß in (14a, b, c) die Größe <rF 
im Gegensatz zur isotropen Fließbedingung (IIa) nur 
eine Normierungskonstante ist. Beispielsweise kann 
Op — cTpj gesetzt werden, wenn aFl die in I-Richtung 
experimentell ermittelte Fließgrenze bedeutet4.

Die Gin. (14) beschreiben mit (13) im Hauptschub- 
spannungsraum ein Ellipsiod mit den Achsen <J2 o-F/a, 
usw.; dies kann als „pseudogeometrische" Deutung der 
HiLLSchen Fließbedingung3 aufgefaßt werden. Für den 
isotropen Sonderfall mit a, =  au = am = 1 geht das 
Ellipsoid zwanglos in die MiSES-Kugel1 mit dem Durch­
messer V2aF über.
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